Thursday, September 5, 2013

Home Owner Newsletter #7


A humble request

If you think that I did a good job inspecting your home, please mention me to anyone you know who will need a home inspector.  If there's any reason you would hesitate to recommend me, please let me know
Welcome to the Homeowner’s Newsletter!  Each month, you’ll find plenty of useful information for keeping your house in great condition so that you can enjoy it for years to come. Preserve your investment—and keep your family safe and healthy—by maintaining your home using the following tips.


Water Heaters

A water heater is an appliance that heats potable water and supplies heated water to the home’s plumbing distribution system.  Most tanks are insulated steel cylinders with an enamel coating on the inner surface. They are referred to as glass-lined tanks. The lining helps prevent corrosion.  A water heater can literally explode if it’s not installed properly. There are standards that regulate the materials, design and installation of water heaters and their related safety devices. Certification marks on them from approved agencies indicate compliance with approved standards.

Conventional residential water heaters have life expectancies that vary greatly.  The typical water heater has a lifespan of about 10 years, based on the following factors: correct installation; usage volume; construction quality; and maintenance.

Correct Installation
A water heater should generally be installed upright. Installing a water heater on its side will place structural stress on it due to inadequate support for the heater and its pipes, and may cause premature failure.  Water heaters should be installed in well-ventilated areas -- not just for fire safety requirements and nitrous-oxide buildup, but also because poor ventilation can shorten its lifespan.  A water heater should also not be placed in an area susceptible to flood damage. Water can rust out the exterior and pipes, decreasing the life expectancy and efficiency of the unit.  A water heater is best placed in an easily accessible area for maintenance.  It should also be readily visible for fire and health-hazard requirements.

Usage
The life expectancy of the water heater depends a great deal on the volume of water used. Using large quantities of water means that the water heater will have to work harder to heat the water. In addition, the greater the volume of water, the greater the corrosive effect of the water will be on the tank materials, pipes, etc.

Construction Quality 
As with most household systems and components, you get what you pay for in a water heater. Cheaper models will generally have a shorter lifespan, while more expensive models will generally last longer. A good indication of a water heater’s construction quality is its warranty.  Longer warranties naturally imply sound construction. According to a 2007 Consumer Report that deconstructed 18 different models of water heaters, it was determined that models with longer warranties were of superior manufacturing quality, with nine- and 12-year models typically having larger or higher-wattage heating elements, as well as thicker insulation. Models with larger heating elements have a much better resistance to mineral buildup or scum.

Pay attention to the model's features.  For example, porcelain casing provides an additional layer of protection against rusting, and a greater level of heat insulation. Some models come with a self-cleaning feature that flushes the pipes of mineral deposit buildup, which can affect the unit's lifespan.  Models with larger or thicker anodes are better-equipped to fight corrosion.

Maintenance and Parts Replacement
The hardness of the water is another consideration when looking at estimating the lifespan of a water heater.  In areas where there is a higher mineral content to the water, water heaters have shorter a lifespan than in other areas, as mineral buildup reduces the units' efficiency. Even in areas where the water is softer, however, some mineral deposition is bound to occur.  A way to counteract this mineral buildup is to periodically flush the water heater system, which not only removes some of the buildup, but, in tank systems, the process heats the water in the tank. Higher-end models typically come equipped with a self-flushing feature.  In models for which manual flushing is required, it is important not to damage the water heater valve, which is usually made of plastic and is easy to break.

Although an older model may appear to be well-maintained, a question arises:  Is the maintenance worth it? Warranties often exclude labor costs, so a good rule to follow is that if the total repair cost per year is greater than 10% of the cost of buying and installing a new water heater, it is probably not worth replacing any damaged parts.

 

Toilets & Bidets

A water closet in the U.S. is commonly referred to as a toilet.  The term “water closet” originates from the time when plumbing was brought indoors, and defecation took place in a small, closet-size room with a pot.

Toilet Styles   
There are three styles of water closets: close-coupled, one-piece, and flushometer valve.  The most common is the close-coupled water closet, which has a bowl and separate gravity-type tank or flushometer tank that is supported by the bowl.  A one-piece water closet is constructed with the gravity-type tank or flushometer tank and bowl as one integral unit.  A flushometer-valve water closet is a bowl with a flushometer valve.  Water closet bowls come in six styles: blow-out, siphon jet, reverse trap, wash-down, siphon vortex, and siphon wash.
Toilet Measurements
A water closet has a water consumption limit of a maximum average of 1.6 gallons of water per flush. The general bowl rim height above the floor is between 14 and 15 inches.  Other rim heights may be needed for water closets used by children (10 inches), and the elderly and persons with physical disabilities (18 inches).  Elongated water closet bowls are required for public or employee use but are often installed in homes.  An elongated bowl is 2 inches longer than a regular bowl. 

Defects at Toilets
The water closet (toilet) may have a clogged drain.  While flushing the toilet, watch the flush performance, and use toilet paper as part of this test.  There should be no excessive odors around the water closet.  Check the flooring around the toilet with your foot.  Using the side of your leg, check to see if the toilet is securely attached to the floor.  If it wobbles, the screws at the base may be loose, or the wax ring that adheres the fixture to the waste pipe may be worn or of the wrong size.  If so, it should be replaced.  Look for dampness around the bottom of the toilet base.  Toilets sometimes run continuously.  Check for a water shut-off valve.  Some toilets are mistakenly connected to the hot water system.  Tank lids are often cracked.  Any defective parts should be immediately replaced to avoid backup flooding.

Bidets
Common in much of Europe and Asia, bidets are toilet-like plumbing fixtures designed to promote posterior hygiene. They’re becoming increasingly common in North America.  Contrary to popular belief, a bidet is not an alternative to a toilet.  Its purpose is as a hygiene device following toilet use.  However, some bidets have been incorporated into toilets, especially in bathrooms that are not large enough for both fixtures.

Bidets, like toilets, are typically made from porcelain and contain a deep recess within a wide rim. They emit an arc of clean water from a nozzle that may be located beneath the rear of the rim or deep within the fixture’s cavity. Users can sit on the rim (or seat, if it has one), or straddle the fixture and face in either direction. He or she can decide which direction to face based on the water jet configuration and the part of their body that needs cleaning. Water temperature and pressure can be adjusted with knobs in order to arrive at the desired settings.

Some bidets come with built-in air dryers. Toilet paper can be used for this purpose if no dryer is available. The bidet can be rinsed after use to keep it clean.

Benefits
  • People who suffer from hemorrhoids, irritable bowel syndrome, or have recently had surgery can find relief with the more gentle water flow of a bidet.
  • As the bidet requires less operator mobility, they are easier to use for the elderly, disabled and obese.
  • Many believe that the use of bidets is more hygienic and effective than toilet paper.
Safety Precautions 
  • Users should familiarize themselves with the rate of temperature and pressure changes that occur when they adjust the controls. Sensitive regions can be burned if the user is not careful, and high water pressure can be irritating.
  • Users should know in advance the direction of the water arc and position themselves accordingly. The spray can be powerful enough to strike a person in the face.

 

Bathroom Sinks (Lavatories)


Lavatories
A lavatory is a washbasin or sink located in a bathroom or washroom.  "Lavatory" means washbasin or sink, and is derived from the Latin word lavatorium, which means washing vessel, and the French word laver, meaning "to wash." Lavatories come in a variety of shapes and sizes.  They are available in enameled cast-iron, vitreous china, stainless steel, porcelain-enameled formed steel, plastic, and non-vitreous ceramic.  They can be wall-mounted, hanger-mounted, under-mounted, pedestal, rimmed, and above-center basin types.
Countertops integrated with lavatories are constructed of a variety of materials, including ABS, PVC, gel-coated fiberglass-reinforced plastic, acrylic, polyester, and cultured marble.  Plastic vanity tops should be impregnated with fire-resistant chemicals to reduce the fuel contribution of the lavatory during a house fire or the accidental fire from a plumber's torch.  They are also made to resist the effect of a burning cigarette left unattended on the vanity top.

Lavatories should have a waste outlet of at least 1-1/4 inches in diameter.  Each lavatory must have a strainer, a pop-up stopper, a crossbar, or other mechanism to prevent items such as rings, toothbrushes and cosmetic items from dropping into the drain.

Lavatory Overflows
Former standards required lavatories to have an overflow, but that is no longer the case.  The overflow is now an option of the manufacturer.  The reason for not requiring an overflow at a lavatory is because of the lack of use of the overflow, which can cause bacterial and micro-organism growth.

Where a lavatory does have an overflow installed, the cross-sectional area of the overflow should be a minimum of 1-1/8 inches; anything larger can promote bacterial and micro-organism growth.  The overflow should be able to prevent overflowing of the sink for a minimum of five minutes when tested from the onset of water flowing into the overflow's opening.

Maintenance Tips
There are many different designs of lavatories, including artisanal styles that sit up on the vanity, rather than being dropped into a recessed cavity in the vanity or countertop.  Regardless of the style or whether it includes an overflow opening, the washbasin should be securely attached to the vanity, be free of cracks and other defects, and have gaps that are properly caulked to prevent moisture buildup, which can lead to unsanitary conditions, including mold growth.

 

Bathtub & Showers


Bathtubs
Bathtubs are made from many different types of materials, including enameled cast-iron, porcelain-enameled steel, and plastic. Plastic tubs are made from materials including ABS, PVC, fiberglass, fiberglass-reinforced plastic, acrylic, and cultured-marble acrylic. Bathtubs that are equipped with shower fixtures should be manufactured with slip-resistant surfaces. Bathtubs should have a drainage outlet (tailpiece) with a minimum diameter of 1-1/2 inches. Every tub should be equipped with a stopper. The bathtub should have an overflow outlet installed. The overflow prevents flooding if the tub is being filled while unattended, and prevents overflow of the water when a person enters a tub that is full.

Fire-Resistance
Bathtubs made of plastic are tested for fire ignition.  They are made with fire-resistant chemicals to reduce their fuel contribution in a house fire, or an accidental exposure to a plumber’s torch.

Large Bathtub Loads
Some bathtubs are so large that they can accommodate more than one person at a time.  These larger bathtubs may need special and additional structural support underneath them to adequately support the load.
A 3x4-foot bathtub may have a capacity to hold 200 gallons or more.  The weight of the bathtub, water, and occupants may total over 1 ton, considering:

                                                  200 pounds for the bathtub
                                            + 1,600 pounds of water
                                            +    350 pounds for two people
                                            = 2,150 pounds


A very large tub may cause structural problems because live-loading for a typical residential home is 40 pounds per square foot.  The live load for a 3x4-foot occupied tub may be assumed to be only 480 pounds, but may weigh over 2,000 pounds while it is in use.

Maintenance Tips
The homeowner should make sure that the tub is free of cracks, rust and other staining, and that all edges, gaps and surrounding tile are adequately caulked to ensure that moisture cannot leach behind the tile work and drywall, which can lead to leaks and structural damage behind walls that won’t be evident until the issue becomes extensive and expensive to fix.

Showers
Plastic, pre-fabricated shower units are constructed of various synthetic materials, including ABS, PVC, gel-coated fiberglass-reinforced plastic, cultured marble, cast-filled fiberglass, polyester, cultured marble acrylic, and acrylic.  These shower units are impregnated with fire-retardant chemicals to reduce the fuel contribution during a fire, and protection against an accidental burn by a plumber's torch.

The showerhead height is not typically regulated by building codes, but the head is commonly installed 70 to 80 inches above the shower floor.

Shower Water Pipes
Water-supply pipes from the shower valve to the showerhead outlet -- referred to as the shower riser pipes -- whether exposed or not, must be firmly attached to a structural component to prevent the pipes from leaking caused by stress fractures or joint failures.  Movement of the showerhead may move the riser piping, possibly causing failure of the piping.  The risers must be firmly secured. 

The common practice for installing the riser pipe is to place a drop-ear elbow at the top of the riser pipe.  The elbow has two wing connections.  They can be screwed to a structural backing board, such as a 2x4.  A pipe strap can be used instead of a drop-ear elbow.  When the riser is exposed, the manufacturer will typically provide a strap or attachment device to match the finish of the fixture and pipe.  The strap or attachment device should be firmly secured to a structural component.

Shower Outlets
The waste outlet for a shower should have minimum diameter of 1-1/2 inches.  The shower outlet should have a strainer that is at least 3 inches in diameter, with dimensional openings in the strainer of at least a 1/4-inch.  The strainer should be removable.

Shower Area
A shower compartment should have an interior cross-sectional area of at least 900 square inches.  This will allow an average-sized adult to clean the lower body while bending over.  A shower that’s any smaller would be inadequately sized.  Shower compartments should be at least 30 inches in minimum dimension.  This measurement is based on the movement of an adult body inside a shower and measured from the finished     interior dimension of the compartment, excluding fixture valves, showerheads, soap dishes and grab bars.  There are exceptions for showers having fold-down seats, and those with compartments at least 25 inches wide and 1,300 square inches in cross-sectional area.

The exception allows for a shower with one dimension being 25 inches, provided the compartment has at least 1,300 square inches of cross-sectional area.  This is useful to contractors and DIY homeowners who remove an old bathtub and install a standup shower fixture in the same space.

Shower Walls
Showers and bathtubs with installed showerheads should be finished with a non-absorbent surface that shall extend to a height of not less than 6 feet above the floor level of the room, or 70 inches above the shower floor.  It should be constructed of smooth, corrosion-resistant and non-absorbent materials to protect the structural components from moisture damage.  The gypsum or cement wallboard behind ceramic tiles of a shower wall should be water-resistant. The water-resistant material is not required in the rest of the bathroom, although it is a common practice to use water-resistant gypsum wallboard in other areas of the bathroom because of the moisture levels.

Shower Access and Egress Opening
Many injuries in a home are related to accidents in the bathtub or shower.  The minimum opening requirements for access and egress allows an adult enough room to safely step into and exit the shower area without having to twist or turn through a narrow opening.  The shower opening (or access and egress opening) should be at least 22 inches of clear and unobstructed finish-width.  The 22-inch width is based on the approximate shoulder width of an average-sized adult, and provides comfortable access to service the valves, showerheads and drain.  It allows for emergency response and rescue access, and emergency egress.

Shower Floors 
The shower floor surface must be watertight with smooth, corrosion-resistant, non-absorbent, waterproof materials.  Joints between the floor and walls of the shower must be sealed or flashed to prevent water penetration.  Ideally, there should be some type of slip-resistant floor surface.  The shower floor structure needs proper support by a smooth and structurally sound base.  The base of the shower floor should be designed to support both dead (structural) and live (people and water) loads. 

Shower pans and liners are installed under and around showers to prevent moisture intrusion from getting into the structural supports under and behind the shower enclosure.  They must meet specific standards for material, installation and size in order to support both dead and live loads.

Shower Glazing 
Glass doors enclosing the shower should be made of safety glazing.  If a window is installed in the shower, the window should be made of safety glazing to provide protection.  If a person slips or falls inside the shower, s/he may be seriously injured by broken glass if the glass is not made of safety glazing.  The safety glazing should be correctly labeled by being permanently marked in a corner, legible and visible after installation, and indoor applications should be marked “indoor use only.”

Maintenance Tips
Similar to other bathroom fixtures, the homeowner should make sure that the shower is free of cracks, rust and other staining, and that all edges, gaps and surrounding tile are adequately caulked to ensure that moisture cannot leach behind the tile work and drywall, which can lead to leaks and structural damage behind walls that won’t be evident until the issue becomes extensive and expensive to fix.  Additionally, if the glazing for the showers doors is damaged, it should be replaced, as cracked glazing can break without notice and cause serious injuries.


Regards,

Jeff L. Gollaher
Full Circle Home Inspections

No comments:

Post a Comment